Make Your Career Soar

Goddard: The Original Rocket Man

Eighty-five years ago this month, pioneering rocket scientist Robert H. Goddard and staff fired a liquid-fueled rocket to a record altitude of 7,500 feet above ground level. The record-setting flight took place at Roswell, New Mexico.

Robert Hutchings Goddard was born in Worcester, Massachusetts on Thursday, 05 October 1882. He was enamored with flight, pyrotechnics, rockets and science fiction from an early age. By the time he was 17, Goddard knew that his life’s work would combine all of these interests.

Goddard was a sickly youth, but spent his well moments as a voracious reader of all manner of science-oriented literature. He graduated in 1904 from South High School in Worcester as the valedictorian of his class. He matriculated at Worcester Polytechnic and graduated with a Bachelor of Science degree in physics in 1908. A Master of Science degree and Ph.D. from Worcester’s Clark University followed in 1910 and 1911, respectively.

Goddard spent the next eight years of his life working on numerous propulsion and rocket-related projects. Then, in 1919, he published his now-famous scientific treatise entitled A Method of Reaching Extreme Altitudes. In that paper, the press glommed on to Goddard’s passing mention that a multi-staged rocket could conceivably fly all the way to the Moon.

Goddard was roundly ridiculed for his fanciful prognostications about Moon flight. The New York Times was especially derogatory in its estimation of Goddard’s ideas and accused him of junk science. A Times editorial even criticized Goddard for his ”misconception” that a rocket could produce thrust in the vacuum of space.

Even the U.S. government largely ignored Goddard. This scornful treatment to which Goddard was subject hurt him profoundly. So much so that he spent the remainder of his life alienated from the denizens of the press as well as the dolts of governmental employ.

Despite the blow to his professional reputation, Goddard resolutely pressed on with his rocket research. Indeed, after more that five years of intense development effort, Goddard and his staff launched the first liquid-fueled rocket on Tuesday, 16 March 1926 in Auburn, Massachusetts. The flight duration was short (2.5 seconds) and the peak altitude tiny (41 feet), but Goddard proved that liquid rocket propulsion was feasible.

Goddard’s liquid-fueled rocket testing would ultimately lead him from the countryside of New England to the desert of the Great South West. With financial support from Harry Guggenheim and the public backing of Charles Lindbergh, Goddard transferred his testing activities to Roswell, New Mexico in 1930. He would continue liquid-fueled rocket testing there until May 1941.

On Friday, 31 May 1935, experimental rocket flight A-8 took to the air from Goddard’s Roswell, New Mexico test site at 1430 UTC. Roughly 15 feet in length and weighing approximately 90 pounds at lift-off, the 9-inch diameter A-8 achieved a maximum altitude of 7,500 feet (1.23 nautical miles) above the desert floor. Only a flight in March of 1937 would go higher (9,000 feet).

Robert Goddard was ultimately credited with 214 U.S. patents for his rocket development work. Only 83 were awarded in his life time. His far-reaching inventions included rocket nozzle design, regeneratively cooled rocket engines, turbo-pumps, thrust vector controls, gyroscopic control systems and more.

Goddard died at the age of 62 from throat cancer in Baltimore, Maryland on Friday, 10 August 1945. Many years would pass before the full import of his accomplishments was comprehended. Then, the posthumously-bestowed recognition came in torrents. In 1959, Congress issued a special gold medal in Goddard’s honor. The Goddard Spaceflight Center was so named by NASA in 1959 as well. Many more such bestowals followed.

Perhaps the most meaningful of the recognitions ever accorded Robert Hutchings Goddard occurred 24 years after his passing. It was in connection with the first manned lunar landing in July of 1969. And it was poetic not only in terms of its substance and timing, but more particularly in light of the source from whence the recognition came.

A terse statement in the New York Times corrected a long-standing injustice. It read: “Further investigation and experimentation have confirmed the findings of Issac Newton in the 17th century, and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere. The Times regrets the error.”

Posted in Aerospace, History

Faith Seven

Fifty-seven years ago this month, NASA Astronaut Leroy Gordon Cooper successfully returned to earth after completing 22 orbits of the home planet. Designated Mercury-Atlas No. 9 (MA-9), Cooper’s flight was the final orbital space mission of the fabled Mercury Program.

Cooper’s eventful space mission began with lift-off from Cape Canaveral’s LC-14 at 13:04 hours UTC on Wednesday, 15 May 1963. Splashdown of his Faith 7 spacecraft occurred 70 miles southeast of Midway Island in the Pacific Ocean on Thursday, 16 May 1963. Mission total elapsed time was 34 hours 19-minutes 49-seconds.

While the first 19 orbits of the MA-9 mission were mostly unremarkable, the final three orbits severely tested Cooper’s mettle and piloting skills.

By the time that he manually initiated ripple-firing of the retro motors at the end of the 22nd orbit, Cooper was flying a dead spacecraft. The electrical system was not functioning, the environmental control system was saturated with carbon dioxide, and even the mission clock was inoperative. Temperatures in the spacecraft exceeded 130F.

Cooper had to align his spacecraft for retro-fire using the horizon as a reference, used a watch for timing, and manually operated the reaction control system to counter dangerous spacecraft oscillations during the retro burn.

Cooper also manually controlled Faith 7 during entry and initiated deployment of the drogue and main parachutes.

Incredibly, Cooper landed within 5 miles of the recovery ship USS Kearsarge. In so doing, he established the record for the most accurate landing in the Mercury Program. Gordon Cooper was the last American astronaut to orbit the Earth alone.

Posted in Aerospace, History

Miracle in the Air

Seventy-nine years ago today, U.S. Marine Lieutenant Walter S. Osipoff was dramatically rescued after his parachute became entangled with the tail wheel of his jump aircraft.  Flying another airplane, U.S. Navy Lieutenant William W. Lowrey and Chief Machinist’s Mate John R. McCants rendezvoused with the jump aircraft, miraculously freed the dangling parachutist, and returned him safely to the ground.

Thursday, 15 May 1941 dawned bright and sunny at Naval Air Station, San Diego, California.  On this particular day, jumpmaster Walter S. Osipoff was responsible for training a contingent of novice military parachutists. Accordingly, Osipoff and his young charges boarded a U.S. Navy R2D-1 transport with Captain Harold Johnson at the controls.  The mission involved parachuting men and materials over a drop zone in similitude of actual combat operations.  After everyone and everything else had exited the aircraft, the plan called for Osipoff to jump.

What happened next is one of those curious occurrences that can only be attributed to Murphy’s Law.  While heaving one of the last equipment bags overboard, Osipoff’s rip cord was accidentally pulled and his parachute deployed as he stood in the aircraft’s hatchway.  Despite his determined resistance, Osipoff was unceremoniously ripped out of the aircraft and into the 110-mph airstream.

Unfortunately, Murphy was not done with Osipoff.  Rather than clearing the aircraft and parachuting to safety, Osipoff’s parachute and shroud lines became entangled with the tail wheel.  The Marine was now in very serious trouble.  He became a human whirligig helplessly twirling at the end of a snarled conglomeration of shroud lines, static cable, and rip cord.  The aircraft crew were unable to reel him in and he could not break free of his connection to the tail wheel.  Naturally, the jump aircraft was not equipped with a radio and was low on fuel.

Pilot Johnson descended to a couple of hundred feet above the earth in the hope that someone on the ground would see Osipoff’s plight and somehow quickly find a way to rescue him.  While many on the ground silently beheld the stark spectacle in the air, it was William Lowrey and John McCants who answered the unspoken call to save their fellow airman.  On their own initiative, they quickly commandeered a nearby U.S. Navy SOC-1 Sea Gull observation aircraft and took to the air.  Just how they would rescue Osipoff from his predicament they did not know.

With Lowrey at the controls and McCants in the back seat, the SOC-1 caught up with the R2D-1 at around 300 feet above ground level.  Lowrey maneuvered his aircraft into a trail position with Osipoff in clear sight above and ahead of him.  What Lowrey and McCants saw was not encouraging.  Apparently, Osipoff’s chest strap had broken due to the high aerodynamic and inertial loads to which he had been subjected.  Further, his leg straps had slipped and were now around his ankles.  The rescuers also noticed that most of Osipoff’s shroud lines had snapped.

What happened next constitutes a miracle in the eyes of many who witnessed Osipoff’s rescue that day.  Using hand signals, Lowrey directed Johnson to ascend to 3,000 feet above ground level and head out over the ocean where the air would be smoother.   Lowrey carefully maneuvered his aerial steed perilously close to both Osipoff and the R2D-1.  The husky McCants, military knife in hand, stood up in the rear cockpit and felt for Osipoff as the two aircraft performed a life-and-death ballet while flying in a much-too-close formation.

As Lowrey brought the SOC-1 uncomfortably close to the dangling Osipoff, McCants reached up and grabbed the stricken parachutist.  The two men held on to each other for dear life.  While his head ended up in the rear cockpit, Osipoff’s body was sprawled across the top of the fuselage forward of the rear seat.  McCants could see that blood was dripping from Osipoff’s helmet and that the man was likely in a state of shock.  But presently, McCants had a more immediate problem to solve.  How could he simultaneously hold onto Osipoff and cut away the airman’s entanglements?  In the next moment, the solution to this dilemma was providentially provided.

As Lowrey struggled to maintain close proximity with the R2D-1, the bumpy air caused the venerable SOC-1 to suddenly jump upward a few feet.  In doing so, the type’s propeller fortuitously cut through Osipoff’s tangled shroud lines.  This freed Osipoff from his seemingly intractable situation.  For good measure, the observation aircraft’s propeller also cut about 12 inches off of the jump aircraft’s tail cone!  No problem.  The propeller and tail cone could be replaced.

If you thought that Murphy had already wrought havoc enough during this unlikely incident, you might consider what happened next.  Rather than simply falling away, the parachute and shroud lines which had been severed by the SOC-1’s propeller somehow managed to drape themselves over the rudder of the aircraft.  This presented Lowrey with one last piloting challenge.  That is, land his aircraft with (1) limited directional control due to a fouled rudder, (2) an injured man half in and half out of the aircraft, and (3) an aft center-of-gravity occasioned by having three men onboard.  Happily, Lowrey was equal to this moment as well.  Thirty-three minutes after the ordeal began, the SOC-1 and her crew safely recovered to the airfield at North Island.  Sorry Murphy; you tried.

Walter Osipoff spent 6-months in the hospital.  Among his many injuries, he sustained several broken ribs and 3 fractured vertebrae.  He recovered completely and went on to spend a long and illustrious career in the Marine Corps.  Osipoff was a tough guy.  While others were afraid for him to return to parachute jumping, Osipoff clearly was not.  He was made of sterner stuff than most.

William Lowrey and John McCants each received the Navy’s Distinguished Flying Cross for their heroic efforts on that spring day so long ago.  In tribute to them, we here repeat the concluding words of their citations: “This [action] is considered one of the most brilliant and daring rescues within the annals of our Naval history. The skill, courage, initiative, and resourcefulness displayed by Lieutenant Lowrey and Aviation Chief Machinist’s Mate McCants in effecting the rescue of Lieutenant Osipoff at the imminent risk of their lives were in keeping with the highest traditions of the Naval Service.”

Posted in Aerospace, History

Light This Candle!

Fifty-nine years ago today, United States Navy Commander Alan Bartlett Shepard, Jr. became the first American to be launched into space. Shepard named his Mercury spacecraft Freedom 7.

Officially designated as Mercury-Redstone 3 (MR-3) by NASA, the mission was America’s first true attempt to put a man into space. MR-3 was a sub-orbital flight. This meant that the spacecraft would travel along an arcing parabolic flight path having a high point of about 115 nautical miles and a total range of roughly 300 nautical miles. Total flight time would be about 15 minutes.

The Mercury spacecraft was designed to accommodate a single crew member. With a length of 9.5 feet and a base diameter of 6.5 feet, the vehicle was less than commodious. The fit was so tight that it would not be inaccurate to say that the astronaut wore the vehicle. Suffice it to say that a claustrophobic would not enjoy a trip into space aboard the spacecraft.

Despite its diminutive size, the 2,500-pound Mercury spacecraft (or capsule as it came to be referred to) was a marvel of aerospace engineering. It had all the systems required of a space-faring craft. Key among these were flight attitude, electrical power, communications, environmental control, reaction control, retro-fire package, and recovery systems.

The Redstone booster was an Intermediate Range Ballistic Missile (IRBM) modified for the manned mission. The Redstone’s up-rated A-7 rocket engine generated 78,000 pounds of thrust at sea level. Alcohol and liquid oxygen served as propellants. The Mercury-Redstone combination stood 83 feet in length and weighed 66,000 pounds at lift-off.

On Friday, 05 May 1961, MR-3 and her one man crew stood poised for launch from Cape Canaveral’s Launch Complex 5.  However, as was so often the case in the early days of manned spaceflight, there were numerous glitch-related holds in the countdown.  Strapped into his seat and with the hatch bolted shut, Shepard had to patiently endure hours of waiting while each glitch was resolved.  In fact, the astronaut had to wait so long that he was finally forced to relieve himself within his spacesuit.  When yet another glitch threatened to further delay or cancel the launch, Shepard angrily barked at flight controllers.  “Fix your little problem and light this candle!”

The Redstone candle was finally lit and Freedom Seven lifted-off at 14:34:13 UTC.  Alan Shepard went to work quickly calling out various spacecraft parameters and mission events. The astronaut would experience a maximum acceleration of 6.5 g’s on the ride upstairs.  Nearing apogee, Shepard manually controlled Freedom 7 in all 3 axes. In doing so, he positioned the capsule in the required 34-degree nose-down attitude. Retro-fire occurred on-time and the retro package was jettisoned without incident. Shepard then pitched the spacecraft nose to 14 degrees above the horizon preparatory to reentry into the earth’s atmosphere.

Reentry forces quickly built-up on the plunge back into the atmosphere with Shepard enduring a maximum deceleration of 11.6 g’s. He had trained for more than 12 g’s prior to flight. At 21,000 feet, a 6-foot drogue chute was deployed followed by the 63-foot main chute at 10,000 feet. Freedom 7 splashed-down in the Atlantic Ocean 15 minutes and 28 seconds after lift-off.

Following splashdown, Shepard egressed Freedom 7 and was retrieved from the ocean’s surface by a recovery helicopter. Both he and Freedom 7 were safely onboard the carrier USS Lake Champlain within 11 minutes of landing. During his brief flight, Shepard had reached a maximum speed of 5,180 mph, flown as high as 116.5 nautical miles and traveled 302 nautical miles downrange.

The flight of Freedom 7 had much the same effect on the Nation as did Lindbergh’s solo crossing of the Atlantic in 1927. However, in light of the Cold War fight against the world-wide spread of Soviet communism, Shepard’s flight arguably was more important. Indeed, Alan Shepard became the first of what Tom Wolfe called in his classic book The Right Stuff, the American single combat warrior.

For his heroic MR-3 efforts, Alan Shepard was awarded the Distinguished Service Medal by an appreciative nation. In February 1971, Alan Shepard walked on the surface of the Moon as Commander of Apollo 14. He was the lone member of the original Mercury Seven astronauts to do so. Shepard was awarded the Congressional Space Medal of Freedom in 1978.

Alan Shepard succumbed to leukemia in July of 1998 at the age of 74. In tribute to this American space hero, naval aviator and US Naval Academy graduate, Alan Shepard’s Freedom 7 spacecraft now resides in a place of honor at the United States Naval Academy in Annapolis, Maryland.

Posted in Aerospace, History

Finest Hour

Fifty years ago this month, the crew of Apollo 13 departed Earth and headed for the Fra Mauro highlands of the Moon. Less than six days later, they would be back on Earth following an epic life and death struggle to survive the effects of an explosion that rocked their spacecraft 200,000 miles from home.

Apollo 13 was slated as the 3rd lunar landing mission of the Apollo Program. The intended landing site was the mountainous Fra Mauro region near the lunar equator. The Apollo 13 crew consisted of Commander James A. Lovell, Jr., Lunar Module Pilot Fred W. Haise, Jr. and Command Module Pilot John L. (Jack) Swigert, Jr. Lovell was making his fourth spaceflight (second to the Moon) while Haise and Swigert were space rookies.

Apollo 13 lifted-off from LC-39A at Cape Canaveral, Florida on Saturday, 11 April 1970. The official launch time was 19:13:00 UTC (13:13 CST). During second stage burn, the center engine shutdown two minutes early as a result of excessive longitudinal structural vibrations. The outer four J-2 engines burned 34 seconds longer to compensate. Arriving safely in low Earth orbit, Lovell observed that every mission seemed to have at least one major glitch. Clearly, Apollo 13′s was now out of the way!

The Apollo 13 payload stack consisted of a Command Module (CM), Service Module (SM) and Lunar Module (LM). The entire ensemble had a lift-off mass of nearly 49 tons. In keeping with tradition, the Apollo 13 crew gave call signs to their Command Module and Lunar Modules. This helped flight controllers distinguish one vehicle from the other over the communications net during mission operations. The CM was named Odyssey and the LM was given the name of Aquarius.

The first two days of the outward journey to the Moon were uneventful. In fact, some at Mission Control in Houston, Texas seemed somewhat bored. The same could be said for the ever-astute press corps who predictably reported that Americans were now responding to the lunar landing missions with a collective yawn. The journalistic sages averred that the space program needed some pepping-up. Going to the Moon might have been impossible yesterday, but today its just run-of-the-mill stuff. Actually, it was all kind of easy. So wrote they of the fickle Fourth Estate.

It all started with a bang at 03:07:53 UTC on Tuesday, 14 April 1970 (21:07:53 CST, 13 April 1970) with Apollo 13 distanced 200,000 miles from Earth. “Houston, we’ve had a problem here.” This terse statement from Jack Swigert informed Mission Control that something ominous had just occurred onboard Apollo 13. Jim Lovell reported that the problem was a “Main B Bus undervolt”. A potentially serious electrical system problem.

But what was the exact nature of the of problem and why did it occur? Nary a soul in the spacecraft nor in Mission Control could provide the answers. All anyone really knew at the moment was that two of three fuel cells formerly supplying electricity to the Command Module were now dead. Arguably more alarming, Oxygen Tank No. 2 was empty with Tank No. 1 losing oxygen at a high rate.

There was something else. The Apollo 13 reaction control system was firing in apparent response to some perturbing influence. But what was it? The answer came with all the subtlety of a sledge hammer blow. Jim Lovell reported that some kind of gas was venting from the spacecraft into space. That chilling observation suddenly explained why the No. 1 oxygen tank was losing pressure so rapidly.

Once Mission Control and the Apollo 13 astronauts fully comprehended the gravity of the situation, the entire team went to work to bring the spacecraft home. Odyssey was powered-down to conserve its battery power for reentry while Aquarius was powered-up and became a makeshift lifeboat. A major problem was that Aquarius had battery power and water sufficient for only 40 hours of flight. The trip home would take 90 hours.

Amazingly, engineering teams at Mission Control conceived and tested means to minimize electrical usage onboard Aquarius. However, the Apollo 13 crew would have to endure privation and hardships to survive. The cabin temperature in Aquarius got down to 38F and each man was permitted only six ounces of water per day. The walls of the spacecraft were covered with condensation. Sleep was almost impossible and fatigue became another relentless enemy to survival.

And then there was the build-up of carbon dioxide. The LM environmental system (EV) was designed to support two men. Now there were three. Between the CM and LM, there was an ample supply of lithium hydroxide canisters to scrub the gas from the cabin atmosphere for the trip home. However, the square CM canisters were incompatible with the circular openings on LM EV. The engineers on the ground invented a device to eliminate this compatibility using materials found onboard the spacecraft.

The Apollo 13 crew had to fire the LM descent motor several times in order to adjust their return trajectory. Use of the SM propulsion system to effect these firings was denied the crew due to concerns that the explosion could have damaged it. These rocket motor firings required precise inertial navigation. The star sightings required for celestial navigation were impossible to make owing to the huge cloud of debris surrounding the spacecraft. Means were devised to use the Sun as the primary navigational source.

While the nation and indeed the world looked on, the miracle of Apollo 13 slowly unfolded. Many a humble heart uttered a prayer for and in behalf of the trio of astronauts. Millions throughout the world followed the men’s journey home via newspaper, radio, television and other media.

As Apollo 13 approached the Earth, the overriding issue was whether the systems onboard Odyssey could be successfully brought back on line. The walls and instrument panels of the craft were drenched with condensation. Unquestionably, the electronics and wiring bundles behind those instrument panels were also soaking wet. Would they short-out once electrical energy flowed through them again? Would there be enough battery power for reentry?

Happily, the CM power-up sequence was successfully accomplished. Once again the resourceful engineers at Mission Control produced under extreme duress. They devised an intricate and never-attempted-in-flight power-up sequence for the CM. Too, the extra insulation added to the CM’s electrical system in the aftermath of the Apollo 1 fire provided protection from condensation-induced electrical arcing.

Approximately four hours prior to reentry, the Apollo 13 crew jettisoned the SM. What they saw was shocking. The module was missing a complete external panel and most of the equipment inside was gone or significantly damaged. One hour prior to entry, Aquarius, their trusty space lifeboat, was also jettisoned. The only concern now was whether the Command Module base heat shield had survived the explosion intact.

On Friday, 17 April 1970, Odyssey hit entry interface (400,000 feet) at 36,000 feet per second. Other than a worrisome additional 33 seconds of plasma-induced communications blackout (4 minutes, 33 seconds total), the reentry was entirely nominal. Splashdown occurred at 18:07:41 UTC near American Samoa in the Pacific Ocean. The USS Iwo Jima quickly recovered spacecraft and crew.

The post-flight mishap investigation revealed that Oxygen Tank No. 2, located deep within the bowels of the SM, exploded when the crew conducted a cryo stir of its multi-phase contents. Unknown to all was the fact that a mismatch between the tank heater and thermostat had resulted in the Teflon insulation of the internal wiring being severely damaged during previous ground operations. This meant that the tank was now a bomb and would detonate its contents when used the next time. In this case, the next time was in flight. The warning signs were there, but went unheeded.

Apollo 13 never landed at Fra Mauro. And none of its crew would ever again fly in space. But in many ways, Apollo 13 was NASA’s finest hour. Overcoming myriad seemingly intractable obstacles in the aftermath of a completely unanticipated catastrophe, deep in trans-lunar space, will forever rank high among the legendary accomplishments of spaceflight. With essentially no margin for error and in the harsh glare of public scrutiny, NASA wrested victory from the tentacles of almost certain failure and brought three weary men safely back to their home planet.

Posted in Aerospace, History

X-13 Vertijet

Sixty-three years ago this month, the USAF/Ryan X-13 Vertijet completed history’s first vertical-to horizontal-back to vertical flight of a jet-powered Vertical Take-Off and Landing (VTOL) aircraft. This event took place at Edwards Air Force Base, California with Ryan Chief Test Pilot Peter F. Girard at the controls.

The X-13 Vertijet was an experimental flight vehicle designed to determine the feasibility of a jet-powered Vertical Take-Off and Landing (VTOL) aircraft. The initial idea for the type dates back to 1947 when the United States Navy (USN) put Ryan under contract to explore the viability of a jet-powered VTOL aircraft. At the time, the Navy was quite interested in exploiting the VTOL concept for tactical advantage. The service envisioned basing VTOL aircraft on submarines and small surface ships.

The USN-Ryan team worked the X-13 VTOL concept for over six (6) years to good effect. While no flight vehicle took to the skies during that time, a great deal of progress was made in the realm of hovering flight using ground-based vertical test rigs. Particular effort was focused on VTOL low-speed flight controls. However, Navy research and development funding was slashed in the aftermath of the Korean War and the X-13 project ran out of money in the summer of 1953.

Fortunately, the United States Air Force (USAF) had become interested in the X-13 and the possibilities of VTOL flight prior to the Navy running out of money. The junior service assumed ownership of the X-13 effort after securing the funding required to continue the program. A pair of X-13 prototypes were subsequently built and flown by Ryan Aeronautical. These aircraft were assigned USAF serial numbers 54-1619 and 54-1620, respectively.

The X-13 measured 23.5 feet in length and had a wing span of 21 feet. The single-place aircraft featured a maximum take-off weight of approximately 7,300 pounds. Hovering flight control was provided via wing tip-mounted yaw and roll nozzles. The heart of the VTOL aircraft was its reliable Rolls-Royce Avon turbojet. The non-afterburning powerplant used standard JP-4 fuel and produced a maximum thrust of 10,000 pounds.

The X-13 was transported, launched and retrieved using a special flatbed trailer. Hinged at one end, the trailer was raised and lowered through the instrumentality of a pair of hydraulic rams. Once raised to a vertical position, the X-13 hung on its nose hook from a steel suspension cable stretched between two mechanical arms. Rather than landing gear, the aircraft sat on two non-retractable tubular bumpers positioned on the lower fuselage.

Flight testing of the No. 1 X-13 (S/N 54-1619) began on Saturday, 10 December 1955 at Edwards Air Force Base, California. The purpose of this initial flight was to test the X-13’s conventional flight characteristics. The aircraft was configured with tricycle landing to permit a runway take-off. Ryan Chief Test Pilot Peter F. “Pete” Girard flew a brief seven minute test hop in which he determined that the X-13 had serious control issues in all 3-axes. The subsequent installation of yaw and roll dampers fixed the problem.

The next phase of flight testing involved vertical hovering flight wherein aircraft handling and control characteristics were explored. For doing so, the X-13 was outfitted with a vertical landing gear system composed of a tubular support structure and a quartet of small caster-type wheels. Thus configured, the X-13 could take-off, hover and land in the vertical. As vertical flight testing progresed, important refinements were made to the aircraft’s turbojet throttling and reaction control systems.

The first vertical flight test was made on Monday, 28 May 1956 with the No. 1 aircraft. Pete Girard was again in the cockpit. Restricting maximum altitude to about 50 feet above ground level, Girard found the aircraft relatively easy to fly and land. Succeeding flight tests would ultimately include practice hook landings wherein a 1-inch thick manila rope suspended between a pair of 50-foot towers was engaged. A great deal of experience with and confidence in the X-13 system was accrued during these tests.

Prior to flying the X-13 all-up mission, an additional phase of flight testing was required which would culminate with the events of Monday, 28 November 1956. With the conventional landing gear installed on the No. 1 aircraft, Girard took-off from Edwards and climbed to 6,000 feet. He then slowly pitched the aircraft into the vertical and hovered for an extended period. Girard then executed a transition back to horizontal flight and landed. The first-ever horizontal-to vertical-back to horizontal flight transition was entirely successful.

The big day came on Thursday, 11 April 1957. Edwards Air Force Base again served as the test site. This time using the No. 2 X-13 (S/N 54-1620), Pete Girard took-off vertically, ascended in hovering flight and transitioned to conventional flight. Following a series of standard flight maneuvers, Girard transitioned the aircraft back into a vertical hover, descended and engaged the suspension cable on the support trailer with the aircraft’s nose hook. The first-ever vertical-to horizontal-back to vertical flight of a jet-propelled VTOL aircraft was history.

Both X-13 aircraft would go on to successfully conduct additional flight testing and stage numerous flight demonstrations during the remainder of 1957. However, innovative and impressive as it was, the X-13 did not garner the advocacy and backing required to proceed to production. A combination of bad timing, a risk averse military and combat performance limitations resulted in the aircraft and its technology quickly fading from the aviation scene.

Remarkably, both X-13 aircraft survived the type’s flight test program. The No. 1 aircraft (S/N 54-1619) is displayed at the San Diego Aerospace Museum in San Diego, California. The No. 2 X-13 aircraft (S/N 54-1620) is on display in the Research and Development Gallery of the United States Air Force Museum at Wright-Patterson Air Force Base in Dayton, Ohio.

Posted in Aerospace, History

America’s Mercury Astronauts

Sixty-one years ago this week, NASA held a press conference in Washington, D.C. to introduce the seven men selected to be Project Mercury Astronauts. They would become known as the Mercury Seven or Original Seven.

Project Mercury was America’s first manned spaceflight program. The overall objective of Project Mercury was to place a manned spacecraft in Earth orbit and bring both man and machine safely home. Project Mercury ran from 1959 to 1963.

The men who would ultimately become Mercury Astronauts were among a group of 508 military test pilots originally considered by NASA for the new role of astronaut. The group of 508 candidates was then successively pared to 110, then 69 and finally to 32. These 32 volunteers were then subjected to exhaustive medical and psychological testing.

A total of 18 men were still under consideration for the astronaut role at the conclusion of the demanding test period. Now came the hard part for NASA. Each of the 18 finalists was truly outstanding and would be a worthy finalist. But there were only 7 spots on the team.

On Thursday, 09 April 1959, NASA publicly introduced the Mercury Seven in a special press conference held for this purpose at the Dolley Madison House in Washington, D.C. The men introduced to the Nation that day will forever hold the distinction of being the first official group of American astronauts. In the order in which they flew, the Mercury Seven were:

Alan Bartlett Shepard Jr., United States Navy. Shepard flew the first Mercury sub-orbital mission (MR-3) on Friday, 05 May 1961. He was also the only Mercury astronaut to walk on the Moon. Shepherd did so as Commander of Apollo 14 (AS-509) in February 1971. Alan Shepard succumbed to leukemia on 21 July 1998 at the age of 74.

Vigil Ivan Grissom, United States Air Force. Grissom flew the second Mercury sub-orbital mission (MR-4) on Friday, 21 July 1961. He was also Commander of the first Gemini mission (GT-3) in March 1965. Gus Grissom might very well have been the first man to walk on the Moon. But he died in the Apollo 1 Fire, along with Astronauts Edward H. White II and Roger Chaffee, on Friday, 27 January 1967. Gus Grissom was 40 at the time of his death.

John Herschel Glenn Jr., United States Marines. Glenn was the first American to orbit the Earth (MA-6) on Thursday, 22 February 1962. He was also the only Mercury Astronaut to fly a Space Shuttle mission. He did so as a member of the STS-95 crew in October of 1998. Glenn was 77 at the time and still holds the distinction of being the oldest person to fly in space. John Glenn was the last member of the Mercury Seven to depart this earth when he passed away in December 2016 at the age of 95.

Posted in Aerospace, History

Final Flight: USAAF Lady Be Good

Seventy-seven years ago this month, a USAAF/Consolidated B-24D Liberator and her crew vanished upon return from their first bombing mission over Italy. Known as the Lady Be Good, the hulk of the ill-fated aircraft was found sixteen years later lying deep in the Libyan desert more than 400 miles south of Benghazi.

The disappearance of the Lady Be Good and her young air crew is one of the most intriguing and haunting stories in the annals of aviation. Books and web sites abound which report what is now known about that doomed mission. Our purpose here is to briefly recount the Lady Be Good story.

The B-24D Liberator nicknamed Lady Be Good (S/N 41-24301) and her crew were assigned to the USAAF’s 376th Bomb Group, 9th Air Force operating out of North Africa. Plane and crew departed Soluch Army Air Field, Libya late in the afternoon of Sunday, 04 April 1943. The target was Naples, Italy some 700 miles distant.

Listed from left to right as they appear in the photo above, the crew who flew the Lady Be Good on the Naples raid were the following air force personnel:

1st Lt. William J. Hatton, pilot — Whitestone, New York
2nd Lt. Robert F. Toner, co-pilot — North Attleborough, Massachusetts
2nd Lt. D.P. Hays, navigator — Lee’s Summit, Missouri
2nd Lt. John S. Woravka, bombardier — Cleveland, Ohio
T/Sgt. Harold J. Ripslinger, flight engineer — Saginaw, Michigan
T/Sgt. Robert E. LaMotte, radio operator — Lake Linden, Michigan
S/Sgt. Guy E. Shelley, gunner — New Cumberland, Pennsylvania
S/Sgt. Vernon L. Moore, gunner — New Boston, Ohio
S/Sgt. Samuel E. Adams, gunner — Eureka, Illinois

The LBG was part of the second wave of twenty-five B-24 bombers assigned to the Naples raid. Things went sour right from the start as the aircraft took-off in a blinding sandstorm and became separated from the main bomber formation. Left with little recourse, the LBG flew alone to the target.

The Naples raid was less than successful and like most of the other aircraft that did make it to Italy, the LBG ultimately jettisoned her unused bomb load into the Mediterranean. The return flight to Libya was at night with no moon. All aircraft recovered safely with the exception of the Lady Be Good.

It appears that the LBG flew along the correct return heading back towards their Soluch air base. However, the crew failed to recognize when they were over the air field and continued deep into the Libyan desert for about 2 hours. Running low on fuel, pilot Hatton ordered his crew to jump into the dark night.

Thinking that they were still over water, the crewmen were surprised when they landed in sandy desert terrain. All survived the harrowing experience with the exception of bombardier Woravka who died on impact when his parachute failed. Amazingly, the LBG glided to a wings level landing 16 miles from the bailout point.

What happens next is a tale of tragic, but heroic proportions. Thinking that they were not far from Soluch, the eight surviving crewmen attempted to walk out of the desert. In actuality, they were more than 400 miles from Soluch with some of the most forbidding desert on the face of the earth between them and home. They never made it back.

The fate of the LBG and her crew would be an unsolved mystery until British oilmen conducting an aerial recon discovered the aircraft resting in the sandy waste on Sunday, 09 November 1958. However, it wasn’t until Tuesday, 26 May 1959 that USAF personnel visited the crash site. The aircraft, equipment, and crew personal effects were found to be remarkably well-preserved.

The saga about locating the remains of the LBG crew is incredible in its own right. Suffice it to say here that the remains of eight of the LBG crew members were recovered by late 1960. Subsequently, they were respectfully laid to rest with full military honors back in the United States. Despite herculean efforts, the body of Vernon Moore has never been found.

A pair of LBG crew members kept personal diaries about their ordeal in the Libyan desert; co-pilot Toner and flight engineer Ripslinger. These diaries make for sober reading as they poignantly document the slow and tortuous death of the LBG crew. To say that they endured appalling conditions is an understatement. The information the diaries contain suggests that all of the crewmen were dead by Tuesday, 13 April 1943.

Although they did not made it out of the desert, the LBG crewmen far exceeded the limits of human endurance as it was understood in the 1940’s. Five of the crew members traveled 78 miles from the parachute landing point before they succumbed to the ravages of heat, cold, dehydration, and starvation. Their remains were found together.

Desperate to secure help for their companions, Moore, Ripslinger and Shelley left the five at the point where they could no longer travel. Incredibly, Ripslinger’s remains were found 26 miles further on. Even more astounding, Shelley’s remains were discovered 37.5 miles from the group. Thus, the total distance that he walked was 115.5 miles from his parachute landing point in the desert.

We honor forever the memory of the Lady Be Good and her valiant crew. However, we humbly note that theirs is but one of the many cruel and ironic tragedies of war. To the LBG crew and the many other souls whose stories will never be told, may God grant them all eternal rest.

Posted in Aerospace, Final Flight, History

America’s Space Twins

Fifty-five years ago this week, Gemini III was launched into Earth orbit with astronauts Vigil I. “Gus” Grissom and John W. Young onboard. The 3-orbit mission marked the first time that the United States flew a multi-man spacecraft.

Project Mercury was America’s first manned spaceflight series. Project Apollo would ultimately land men on the Moon and return them safely to the Earth. In between these historic spaceflight efforts would be Project Gemini.

The purpose of Project Gemini was to develop and flight-prove a myriad of technologies required to get to the Moon. Those technologies included spacecraft power systems, rendezvous and docking, orbital maneuvering, long duration spaceflight and extravehicular activity.

The Gemini spacecraft weighed 8,500 pounds at lift-off and measured 18.6 feet in length. Gemini consisted of a reentry module (RM), an adapter module (AM) and an equipment module (EM).

The crew occupied the RM which also contained navigation, communication, telemetry, electrical and reentry reaction control systems. The AM contained maneuver thrusters and the de-boost rocket system. The EM included the spacecraft orbit attitude control thrusters and the fuel cell system. Both the AM and EM were used in orbit only and discarded prior to entry.

Gemini-Titan III (GT-3) lifted-off at 14:24 UTC from LC-19 at Cape Canaveral, Florida on Tuesday, 23 March 1965. The two-stage Titan II launch vehicle placed Gemini 3 into a 121 nautical mile x 87 nautical mile elliptical orbit.

Gemini 3’s primary objective was to put the maneuverable Gemini spacecraft through its paces. While in orbit, Grissom and Young fired thrusters to change the shape of their orbital flight path, shift their orbital plane, and dip down to a lower altitude. Gemini 3 was also the first time that a manned spacecraft used aerodynamic lift to change its entry flight path.

As spacecraft commander, Gus Grissom named his cosmic chariot The Molly Brown in reference to a then-popular Broadway show; “The Unsinkable Molly Brown”. Grissom chose the moniker in memory of his first spaceflight experience wherein his Liberty Bell 7 Mercury spacecraft sunk in almost 17,000 feet of water during post-splashdown operations.

At almost two (2) hours into the mission, pilot John Young presented Grissom with his favorite sandwich which had been smuggled onboard. Grissom and Young took a bite of the corned beef sandwich and put it away since loose crumbs could get into spacecraft electronics with catastrophic results. Not amused, NASA management reprimanded the crew after the mission.

Gemini 3 splashed-down in the Atlantic Ocean at 19:16:31 UTC following a 3 orbit mission. The spacecraft landed 45 nautical miles short of the intended splashdown point due to a mis-prediction of aerodynamic lift. Although hot and sea-sick, Commander Grissom refused to open the spacecraft hatches until the recovery ship USS Intrepid came on station.

Nine (9) additional Gemini space missions would follow the flight of Gemini 3. Indeed, the historical record shows that the Gemini Program would fly an average of every two (2) months by the time Gemini XII landed in December 1966. During that period, the United States would take the lead in the race to the Moon that it would never relinquish.

Posted in Aerospace, History

Remembering HYPER-X Flight 2

Sixteen years ago this week, the NASA X-43A scramjet-powered flight research vehicle reached a record speed of over 4,600 mph (Mach 6.83). The test marked the first time in the annals of aviation that a flight-scale scramjet accelerated an aircraft in the hypersonic Mach number regime.

NASA initiated a technology demonstration program known as HYPER-X in 1996. The fundamental goal of the HYPER-X Program was to successfully demonstrate sustained supersonic combustion and thrust production of a flight-scale scramjet propulsion system at speeds up to Mach 10. The term scramjet stands for Supersonic Combustion RAMJET.

The scramjet is a key to sustained hypersonic flight within the earth’s atmosphere. Whereas rockets are capable of producing large thrust magnitudes, both the duration of operation and the amount of thrust per unit propellant mass is low. In part, this is because a rocket has to carry its own fuel and oxidizer supplies. A scramjet is a much more efficient producer of thrust in that it only has to carry its fuel and uses the atmosphere as its oxidizer source.

Rocket technology is a highly developed discipline with a deep experience and application base. In contradistinction, flight-scale scramjet technology is still in a developmental stage. Considerations such as initiating and sustaining stable combustion is a supersonic stream, efficient conversion of fuel chemical energy to kinetic energy, and optimal integration of the scramjet propulsion system into a hypersonic airframe are among the challenges that face designers.

Also known as the HYPER-X Research Vehicle (HXRV), the X-43A aircraft was a scramjet test bed. The aircraft measured 12 feet in length, 5 feet in width, and weighed nearly 3,000 pounds. The X-43A was boosted to scramjet take-over speeds with a modified Orbital Sciences Pegasus rocket booster.

The combined HXRV-Pegasus stack was referred to as the HYPER-X Launch Vehicle (HXLV). Measuring approximately 50 feet in length, the HXLV weighed slightly more than 41,000 pounds. The HXLV was air-launched from a B-52 mothership. Together, the entire assemblage constituted a 3-stage vehicle.

The second flight of the HYPER-X program took place on Saturday, 27 March 2004. The flight originated from Edwards Air Force Base, California. Using Runway 04, NASA’s venerable B-52B (S/N 52-0008) started its take-off roll at approximately 20:40 UTC. The aircraft then headed for the Pacific Ocean launch point located just west of San Nicholas Island.

At 21:59:58 UTC, the HXLV fell away from the B-52B mothership. Following a 5 second free fall, rocket motor ignition occurred and the HXLV initiated a pull-up to start its climb and acceleration to the test window. It took the HXLV about 90 seconds to reach a speed of slightly over Mach 7.

Following rocket motor burnout and a brief coast period, the HXRV (X-43A) successfully separated from the Pegasus booster at 94,069feet and Mach 6.95. The HXRV scramjet was operative by Mach 6.83. Supersonic combustion and thrust production were successfully achieved. Total power-on flight duration was approximately 11 seconds.

As the X-43A decelerated along its post-burn descent flight path, the aircraft performed a series of data gathering flight maneuvers. A vast quantity of high-quality aerodynamic and flight control system data were acquired for Mach numbers ranging from hypersonic to transonic. Finally, the X-43A impacted the Pacific Ocean at a point about 450 nautical miles due west of its launch location. Total flight time was approximately 15 minutes.

The HYPER-X Program made history that day in late March 2004. Supersonic combustion and thrust production of an airframe-integrated scramjet were achieved for the first time in flight; a goal that dated back to before the X-15 Program. Along the way, the X-43A established a speed record for airbreathing aircraft and earned a Guinness World Record for its efforts.

Posted in Aerospace, History